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Abstract. We interpret Galois covers in terms of particular monoidal functors, extending
the correspondence between torsors and fiber functors. As applications we characterize
tame G-covers between normal varieties for finite and étale group schemes and we prove
that, if G is a finite, flat and finitely presented nonabelian and linearly reductive group
scheme over a ring, then the moduli stack of G-covers is reducible.

Introduction

Let R be a base commutative ring and G be a flat, finite and finitely presented
group scheme over R. In [Ton13a] I introduced the notion of a ramified Galois
cover with group G, briefly a G-cover, and the stack G-Cov of such objects (see
1.2 for details). This stack is algebraic and of finite type over R and contains BRG,
the stack of G-torsors, as an open substack. If G is diagonalizable, its nice rep-
resentation theory makes it possible to study G-covers in terms of simplified data
(collections of invertible sheaves and morphisms between them) and to investigate
the geometry of the moduli G-Cov (see [Ton13a]).

The general case is much harder, even when G is a constant group over an
algebraically closed field of characteristic zero: a direct approach as in the di-
agonalizable case fails because of the complexity of the representation theory of
G. Thus in order to handle general G-covers one needs a different perspective
and Tannaka’s duality comes into play. The G-torsors are very special G-covers
and the solution of Tannaka’s reconstruction problem asserts that they can be
described in terms of particular strong monoidal functors with domain LocGR,
the category of G-comodules over R which are projective and finitely generated
as R-modules. If X is an algebraic stack, denote by LocX (resp. QCohX ) the
category of locally free of finite rank (resp. quasi-coherent) sheaves on X , so that
LocBRG ≃ LocGR. When X = SpecA we simply write LocA and QCohA. The
result about G-torsors can be stated as follows.

Theorem ([DM82, Thm. 3.2], [Sch13, Thm. 1.3.2]). Let SMonGR be the stack over
R whose fiber over an R-scheme T is the category of R-linear, exact (on short
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exact sequences) and strong monoidal functors LocGR→ LocT . Then the functor

BRG
∆−−−−→ SMonGR,

(T
s−→ BRG) 7→ s∗|LocG R

is an equivalence of stacks.

Since a G-cover is a “weak” version of a G-torsor it is natural to look at a
“weak” version of a strong monoidal functor, that is, as the words suggest, a (lax)
monoidal functor. This idea has motivated the study in [Ton14] of more general
monoidal (and non) functors and this paper is an application of it. We introduce
the stack MonGR (MonGR,reg) over R whose fiber over an R-scheme T is the groupoid

of R-linear, exact monoidal functors Γ: LocGR→ LocT (such that rk ΓV = rkV
(pointwise) for all V ∈ LocGR). We also denote by LAlgGR the stack over R whose
fiber over an R-scheme T is the groupoid of locally free sheaves of algebras on T
with an action of G, or, alternatively, the stack of covers with an action of G. The
stack LAlgGR is algebraic and locally of finite presentation over R, and G-Cov is an
open substack of LAlgGR (see 1.5).

Recall that G is linearly reductive over R if the functor of invariants

(−)G : QCohBRG→ QCohR

is exact. We say that G has a good representation theory over R if it is linearly
reductive and there exists a finite collection IG of sheaves in LocGR such that
for all geometric points (one is enough if SpecR is connected) Spec k → SpecR
the map (−⊗R k) : IG → LocG k is a bijection onto a collection of representatives
of the irreducible representations of G ×R k. Examples of groups with a good
representation theory are diagonalizable groups and linearly reductive groups over
algebraically closed fields. In general we show that any linearly reductive group G
over R has fppf locally (étale locally if G/R is étale), a good representation theory
(see 1.15).

Theorem A. The map of stacks

∆̃ : G-Cov → MonGR, (X
f−→ T ) 7→ (f∗OX ⊗−)G

is an open immersion; it extends the equivalence ∆: BRG → SMonGR and takes

values in MonGR,reg. If G is linearly reductive over R, then ∆̃ extends to an equiv-

alence ∆̃ : LAlgGR → MonGR, namely, ∆̃(A ) = (A ⊗ −)G; the stack G-Cov is an
open and closed substack of LAlgGR and, if G has a good representation theory, then

∆̃(G-Cov) = MonGR,reg.

The equality ∆̃(G-Cov) = MonGR,reg is not true in general, even when G is
linearly reductive (see 1.8).

We are going to show two applications of the above point of view. The first one
is about the geometry of G-Cov (see also 3.3).
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Theorem B. If G is a finite, flat and finitely presented nonabelian linearly re-
ductive group scheme over R then the stack G-Cov is reducible.

When G is a diagonalizable group the same result holds except for a few cases
when G has low rank (see [Ton13a, Cor. 4.17]). Thus the bad behaviour of the
moduli G-Cov is still present in the nonabelian setting. Note that the proof of
Theorem B does not use and cannot be adapted to show the reducibility of G-Cov
when G is a diagonalizable group. Moreover, it requires the study of more general
monoidal functors than the ones present in MonGR,reg. Theorem B already appears
in my PhD thesis [Ton13b], but the proof we present here is slightly different and
relies on the following fact: if H is an open and closed subgroup scheme of G the
functor

indGH : LAlgHR → LAlgGR, A 7→ (A ⊗R[G])H

is well defined, quasi-affine and étale (see 2.1).
The second application is a characterization of G-covers of schemes regular in

codimension 1. Let us introduce some notation and definitions in order to explain
the result. Let f : X → T be a cover with an action of G on X. We denote by
trf : f∗OX → OT the trace map, by t̃rf : f∗OX → (f∗OX)

∨
the map x 7→ trf (x·−)

and by sf ∈(det f∗OX)−2 the discriminant section, that is the section obtained by
det t̃rf . If f is a G-cover with associated monoidal functor Ωf = (f∗OX ⊗ −)G :

LocGR→ LocT and V ∈ LocGR, consider

ΩfV ⊗ ΩfV ∨ → ΩfV⊗V ∨ → ΩfR = (f∗OX)G = OT

where the first map is given by monoidality, while the second is induced by the

evaluation V ⊗ V ∨ → R. The morphism above yields a map ξf,V : ΩfV ∨ → (ΩfV )
∨

of locally free sheaves whose rank coincides with rk V by Theorem A. Applying
the determinant, we obtain a section sf,V ∈ (detΩfV ⊗ detΩfV ∨)−1. If q ∈ T is a

point and V ∈ LocG T we denote by rkq V the rank of V ⊗OT,q and by rkq G the
rank of G over q, that is rkq OT [G]. The result we will prove is the following.

Theorem C. Let G be a finite and étale group scheme over R. Also let Y be
an integral and Noetherian R-scheme with dimY ≥ 1, and f : X → Y be a cover
with an action of G on X over Y and such that X/G = Y . Also let q ∈ Y be a
codimension 1 and regular point. Then the following are equivalent:

1) All points of X over q are regular, tame (the ramification index is coprime
with char k(q)) and have separable residue fields.

2) We have vq(sf ) < rk f , where vq denotes the valuation in q.
3) There exist an étale neighborhood U → Y with a point q′ mapping to q and

with G × U constant, subgroups T ▹ H < G × U with H/T cyclic of order
coprime with char k(q) and SpecB ∈ (H/T )-Cov(U) such that X ×Y U =
Spec(indGH B), Bq′ is a regular local ring, H is the geometric stabilizer of a
codimension 1 point of X over q, T is the geometric stabilizer of a generic
point of X, and SpecB is generically an (H/T )-torsor.

If one of the above conditions is satisfied we have that: f is generically a G-
torsor if and only if rk f = rkG and in this case the geometric stabilizers of the
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codimension 1 points of X over q are linearly reductive and cyclic and there exists
an open subset V ⊆ Y containing q and such that f|f−1(V ) : f

−1(V ) → V is a G-
cover; if G is constant, G→ AutX is injective and the generic fiber of f : X → Y
is connected, then rk f = rkG.

If G is linearly reductive and rk f = rkG then the above conditions are equiva-
lent to

4) f ∈ G-Cov and for all V ∈ RepGR (resp., V ∈ IG if G is good) we have
vq(sf,V ) ≤ rkq(V/V

G).

5) f ∈ G-Cov and for all V ∈ RepGR (resp., V ∈ IG if G is good) we have that
Coker(ξf,V )⊗OY,q is defined over k(q), that is, mq(Coker(ξf,V )⊗OY,q) = 0
where mq denotes the maximal ideal of OY,q.

In this case f ∈ ZG(Y ), where ZG denotes the schematic closure of BG inside
G-Cov (see 3.5).

A variant of this result already appeared in my PhD thesis [Ton13b] but under
stronger hypotheses on the geometric stabilizers in codimension 1 (see [Ton13b,
Thm. 4.4.7]). The proof we present here is different and relies on [Ton15], where
a non-equivariant analogue of the above theorem is proved.

We now briefly describe the subdivision of the paper. In the first section we
prove Theorem A, while in the second we study the property of induction from an
open and closed subgroup. The third section is dedicated to the proof of Theorem
B and the fourth section to the proof of Theorem C.

Notation

Throughout the paper we fix a base ring R, so that all rings, schemes and stacks
will be defined over R.

Consider a scheme T and a finite, flat and finitely presented group scheme G
over R. We denote by BRG (or simply BG) the stack over R of G-torsors, by LocT
(resp. QCohT ) the category of sheaves of OT -modules that are locally free of finite
rank (resp. quasi-coherent), by LocG T (resp. QCohG T ) the category of sheaves of
OTmodules that are locally free of finite rank (resp. quasi-coherent) together with
an action of G, and by QAlgG T the category of quasi-coherent sheaves of algebras
A on T together with an action of G. When T = SpecA we will often replace T
by A and write, for instance, LocGA instead of LocG(SpecA).

If C , D are R-linear monoidal categories with unities I, J and Γ: C → D is an
R-linear functor, a monoidal structure on Γ consists of a natural transformation
ιV,W : ΓV ⊗ ΓW → ΓV⊗W for V,W ∈ C and a morphism 1: J → ΓI satisfy-
ing certain compatibility conditions. A monoidal structure in which those maps
are isomorphisms is called strong. We refer to [Ton14, Def. 2.18] for the precise
definition.

Given F ∈ QCohG T we set ΩF = (F ⊗ −)G : LocGR → QCohT , which is an
R-linear functor. If F ∈ QAlgG T then ΩF has a monoidal structure induced by
the multiplication and the unity of F (see [Ton14, Prop. 2.22 and Sect. 4]).

A map f : X → T of schemes is called a cover if it is affine and f∗OX is locally
free of finite rank or, alternatively, if it is finite, flat and finitely presented. Affine
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maps into a scheme T will be often thought of as quasi-coherent sheaves of algebras
on T , so that covers correspond to locally free sheaves of algebras of finite rank.

A geometric point of a scheme T is a map Spec k → T , where k is an algebraically
closed field.

Acknowledgement. I would like to thank Angelo Vistoli and Matthieu Romagny
for the useful conversations I had with them and all the suggestions they gave me.

1. Galois covers via monoidal functors

The aim of this section is to prove Theorem A. We fix a base ring R and a finite,
flat and finitely presented group scheme G over R.

Taking into account [Ton14, Rem. 4.3 and Thm. 4.6] we have the following re-
sult.

Theorem 1.1. The functor Ω∗ yields an equivalence between QCohG T (QAlgG T )
and the category of R-linear (monoidal ) functors LocGR→ QCohT which are left
exact on short exact sequences.

Definition 1.2. A G-cover of an R-scheme T is a cover f : X → T together with
an action of G on X such that f is invariant and f∗OX and R[G] ⊗ OT are fppf
locally isomorphic as G-comodules (not as rings).

We denote by G-Cov the stack over R of G-covers. The stack G-Cov has been
introduced in [Ton13a]; it is algebraic and of finite type over R and contains BRG
as an open substack.

The following remark (see [Jan87, Part 1, 3.4] for a proof) will be often used in
the next pages.

Remark 1.3. If M ∈ QCohGR and ε : R[G] → R is the counit then the evaluation
in ε yields an R-linear isomorphism

HomG(R[G]
∨
,M) ≃M

or, equivalently, the composition (R[G] ⊗ M)G → R[G] ⊗ M
ε⊗idM−−−−→ M is an

R-linear isomorphism.

Definition 1.4. Given an R-scheme T we denote by LAlgG T the groupoid of
locally free sheaves of algebras over T with an action of G and by LAlgGR the stack
over R they form. Given n ∈ N we also denote by LAlgGn T (resp. LAlgGR,n) the

subcategory of LAlgG T (resp. substack of LAlgGR) of sheaves of rank n.

Proposition 1.5. We have that LAlgGR =
⊔
n∈N LAlgGR,n and that LAlgGR,n is an

algebraic stack of finite presentation over R for all n ∈ N. Moreover, the map

G-Cov → LAlgGR, (f : X → Y ) 7→ f∗OX

is an open immersion.
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Proof. The first claim follows from the fact that the rank function for a locally
free sheaf is locally constant. For the second one, consider the forgetful functor
LAlgGR,n → BGLn and callX the fiber product along the universal torsor SpecR→
BGLn. For simplicity we can assume that R[G] is free as an R-module. The stack
X is actually a sheaf X : (Sch/R)op → (Sets) and it maps a scheme T to the set
of all possible ring structures together with an action of G on On

T . Since a ring
structure is given by maps On

T ⊗On
T → On

T (the multiplication) and OT → On
T (the

unity), while a R[G]-comodule structure by a map On
T → On

T⊗R[G] (the comodule
structure), we can embed X into an affine space AN . The compatibility conditions
among the previous maps allow us to conclude that X is the zero locus in ANof
finitely many polynomials, as required.

We now deal with the last claim. Clearly the map in the statement is fully
faithful. We have to prove that if A ∈ LAlgGB, where B is a ring, then the locus
in SpecB where A is fppf locally the regular representation is open. Concretely,
if ξ : Spec k → SpecB is a geometric point and A ⊗ k ∈ G-Cov(k) we will prove
that there exists a flat and finitely presented map SpecB′ → SpecB through
which ξ factors and such that A ⊗ B′ ≃ B′[G]. Denote by p ∈ SpecB the
image of ξ. Both the stack G-Cov and LAlgGR are locally of finite type over R and
therefore also the map G-Cov → LAlgGR is so, which in particular implies that
A ⊗ k(p) ∈ G-Cov(k(p)). Thus we can assume k = k(p). Since k is algebraically
closed we have that A ⊗ k is the regular representation and thus we have a G-
equivariant isomorphism ω : k[G]

∨ → (A ⊗ k)
∨
. By 1.3 the map ω is completely

determined by a ϕ ∈ A ∨ ⊗ k. There exists a finite field extension L/k(p) such
that ϕ comes from some element in A ∨ ⊗ L and it is a general fact that we can
find an fppf neighborhood SpecB′ of p in SpecB with a point p′ ∈ SpecB′ over
p such that k(p′) = L. Up to shrinking SpecB′ around p′ we can assume we have
ϕ ∈ A ∨ inducing ϕ. The element ϕ defines a G-equivariant map ω : B[G]

∨ → A ∨

of locally free sheaves on A inducing ω. Since ω is an isomorphism it follows that
ω is an isomorphism in a Zariski open neighborhood of p as required. �
Proof of Theorem A, first sentence. Let A be an R-algebra. By 1.3 we have

Ω
A[G]
V = (A[G]⊗ (V ⊗A))G ≃ V ⊗A for V ∈ LocGR.

More precisely, ΩA[G] is isomorphic to the forgetful functor

(−⊗R A) : LocGR→ LocA (∗)

as monoidal functor. In particular, if A ∈ QAlgGA is fppf locally isomorphic
to A[G] (without ring structure) then the functor ΩA = (A ⊗ −)G : LocGR →
QCohA is fppf locally R-linearly isomorphic to the forgetful functor (∗) (without
monoidal structure). This easily implies that ∆̃ is well defined and takes values
in MonGR,reg. It is fully faithful thanks to 1.1. It extends the functor ∆ because if
f : X → SpecA is a G-torsor corresponding to s : SpecA → BRG then s∗OA ≃
f∗OX as sheaves of algebras on BRG and

(s∗OA ⊗R V )G ≃ HomBR G(V
∨, s∗OA) ≃ HomA(s

∗V ∨, A)

≃ s∗V for V ∈ Loc(BRG) = LocGR.
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We now prove that it is an open immersion. Let Γ ∈ MonGR(A). By 1.1 there
exists A ∈ QAlgGA such that Γ ≃ ΩA . By definition of MonGR and taking into
account 1.3 we also have that ΩA

R[G] = (A ⊗ R[G])G ≃ A is a locally free sheaf

on A, that is, A ∈ LAlgGA. The result then follows because, by 1.5, the locus in
SpecA where A is fppf locally the regular representation is open. �

Definition 1.6. The group scheme G is called linearly reductive over R if the
functor of invariants

(−)G : ModGR→ ModR

is exact.

From now until the end of the section we will assume that G is linearly reductive
over R. Remember that this condition is stable under base change, is local in
the fppf topology, and that G is fppf locally well-split, which means isomorphic
to a semidirect product of a diagonalizable group scheme and a constant group
whose order is invertible in the base ring (see [AOV08, Prop. 2.6, Thm. 2.19]). We
summarize some properties of linearly reductive groups we are going to use.

Proposition 1.7. Let T be an R-scheme and A be an R-algebra. Then

1) If F ∈ QCohG T and H ∈ QCohT then the natural map

FG ⊗H → (F ⊗H)G

where the action of G on H is trivial, is an isomorphism. In particular,
taking invariants (−)G : QCohG T → QCohT commutes with arbitrary base
changes.

2) If F ∈ QCohG T is locally free of finite rank then the map FG → F locally
splits. In particular, FG is locally free of finite rank.

3) Every short exact sequence in QCohGA of sheaves in LocGA splits. In parti-
cular any R-linear functor from LocGR to an R-linear category is automa-
tically exact.

4) If R is a field, any finite-dimensional representation of G is a direct sum of
irreducible representations.

Proof. We can assume T affine, say T = SpecA and replace F ,H with modules
F,H, respectively. Point 1) follows because the map in the statement is an iso-
morphism when H is free and, in general, using a presentation of H and using
the exactness of (−)G. Point 1) implies that FG → F is universally injective,
so that point 2) follows from [Mat89, Thm. 7.14] after reducing to a Noetherian
base (for instance, assuming that G is well-split and, thus, defined over Z). For
3), if 0 → V → W → Z → 0 is an exact sequence of sheaves in LocGA, then
Hom(W,V ) → Hom(V, V ) is surjective and, taking invariants, we can find an
equivariant splitting. Point 4) follows easily from 3). �

We now show an example of a finite, étale and linearly reductive group G over
Q with ∆̃(G-Cov) ̸= MonGR,reg (see Theorem A).
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Example 1.8. Consider R = Q, G = Z/3Z, A = Q[x, y]/(x, y)2 with the action of
G × Q ≃ µ3 given by deg x = deg y = 1 and Γ = ΩA = (A ⊗Q −)G : LocGQ →
LocQ. We have that A /∈ G-Cov(Q) = µ3-Cov(Q) because A is not isomorphic to
the regular representation (it does not contain the µ3-representation corresponding
to the character 2 ∈ Z/3Z). On the other hand we have Γ ∈ MonGQ,reg(Q): the
rank condition can be easily checked on the two irreducible representations of G
over Q. By 1.1 we can conclude that Γ is not in the essential image of the functor
∆̃ : G-Cov → MonGR.

The problem in the above example is that the group Z/3Z has a two-dimensional
irreducible representation over Q which splits over Q. We want therefore to find
a class of linearly reductive groups whose “irreducible” representations are also
geometrically irreducible.

Lemma 1.9. Let I be a finite collection of sheaves in LocGR which have positive
rank in all points of SpecR. The following are equivalent:

1) The natural maps

ηM :
⊕
V ∈I

V ⊗R HomG
R(V,M) →M for M ∈ ModGR

are isomorphisms.

2) For all geometric points Spec k
ξ−→ SpecR the set {V ⊗R k}V ∈I is a set of

representatives of the irreducible representations of G × k and V ⊗R k ≃
W ⊗R k if and only if V =W .

3) (Assuming SpecR connected ) there exists a geometric point Spec k
ξ−→ SpecR

for which the set {V ⊗R k}V ∈I is a set of representatives of the irreducible
representations of G× k and V ⊗R k ≃W ⊗R k if and only if V =W .

In the above cases we have that HomG(V,W )=0 if V ̸=W ∈ I and HomG(V, V ) =
RidV if V ∈ I.

Proof. We are going to use that taking invariants commutes with arbitrary base
changes (see 1.7). If Spec k → SpecR is a geometric point we set Gk = G× k.

1)⇒ 2). If Spec k → SpecR is a geometric point and M ∈ ModGk k then
HomG

R(V,M) ≃ HomGk

k (V ⊗ k,M) and ηM ≃ (ηM )⊗ k. Thus we can assume that
R is an algebraically closed field. In this case the result follows by decomposing
representations into irreducible ones.

2), 3)⇒ 1). If V,W ∈ LocGR then HomG(V,W ) is locally free by 1.7, 2).
Thus, checking the rank on the geometric points (on the given geometric point
if SpecR is connected), if V,W ∈ I then HomG(V,W ) = 0 for V ̸= W and

HomG(V, V ) = R idV . In particular, if Spec k
ξ−→ SpecR is any geometric point

then ξ∗ : IG → LocG k is injective onto a subset of representatives of the irreducible
representations of G × k. Given M ∈ ModGR we therefore have that ξ∗ηM is
injective and, if ξ∗(IG) is a full set of representatives of irreducible representations
of G× k, an isomorphism. If SpecR is connected, so that R[G] has constant rank,
applying this consideration to M = R[G] and using 1.3 we can conclude that
3)⇒2) by dimension. In particular ηM is an isomorphism on all geometric points
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of SpecR. If M is an arbitrary direct sum of locally free G-comodules of finite
rank it follows that ηM is an isomorphism. In general, using 1.3, we can find an
exact sequence of G-comodules V1 → V0 →M → 0 where the Vi are sum of copies
of R[G]

∨
. Since ηV0 , ηV1 are isomorphisms, by functoriality it follows that ηM is

an isomorphism as well. �
Remark 1.10. If I is a collection of sheaves satisfying the conditions in 1.9, then
there exists another collection I ′ satisfying the same conditions and such that
R ∈ I. Indeed notice first that, if R = R1 × R2 and we are able to replace the
collections I| SpecR1

and I| SpecR2
then we can easily replace the collection I. In

particular, since the map ηR in 1.9 is an isomorphism, we can assume there exists
V ∈ I such that V ⊗HomG(V,R) → R is an isomorphism, which means that V is
an invertible sheaf with the trivial action of G. If we replace V by R in I we find
the desired collection.

Definition 1.11. We will say that G has a good representation theory over R if
it admits a collection I as in 1.9. A good linearly reductive group is a pair (G, IG)
where G is a finite, flat, finitely presented and linearly reductive group scheme
over R and IG is a collection as in 1.9. We will simply write G if this will not lead
to confusion. For simplicity we will also assume that R ∈ IG (see 1.10).

If R→ R′ is a morphism and G is a good linearly reductive group, then G×R′

is naturally a good linearly reductive group with the collection of the pullbacks of
the modules in IG.

Remark 1.12. All diagonalizable group schemes are good over the integers, while
if R is a field, then G is good if and only if its irreducible representations are
geometrically irreducible.

We are going to prove that any linearly reductive group is fppf locally good.

Lemma 1.13. Let X be a proper and flat algebraic stack over a Noetherian local
ring R. Denote by k the residue field of R and consider a locally free sheaf V0 of
rank n over X ×k. If H2(X ×k,End(V0)) = 0, then there exists a locally free sheaf

of rank n over X × R̂ lifting V0, where R̂ is the completion of R.

Proof. Taking into account Grothendieck’s existence theorem for proper stacks, we
can assume that R is an Artinian ring (so that R̂ ≃ R) and that we have a lifting V
of V0 over X ×(R/I), where I is an ideal of R such that I2 = 0. Define the stack Y
over the small fppf site Xfppf of X whose objects over SpecB → X are locally free
sheaves N of rank n over B with an isomorphism ϕ : N ⊗ (B/IB) → V ⊗ (B/IB).
A section of Y → Xfppf yields a lifting of V on X . We are going to prove that
Y is a gerbe over Xfppf banded by the sheaf of abelian groups π∗ End(V0), where
π : X×k → X is the obvious closed immersion. Since H2(X , π∗ End(V0)) = H2(X×
k,End(V0)) = 0 parametrizes those gerbes (see [Gir71, Chap. IV, §3, Sect. 3.4]),
we can then conclude that Y → Xfppf is a trivial gerbe, which means that it has a
section as required.

I claim that V is trivial in the fppf topology of X , which implies that Y → Xfppf

has local sections. Indeed if B is a ring and P → SpecB/IB is a Gln-torsor then
by standard deformation theory it extends to a smooth map Q → SpecB. In
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particular, if we base change to Q, we can conclude that P over Q× (B/IB) has
a section, which means that it is trivial.

I also claim that two objects of Y over the same object of Xfppf are locally
isomorphic. Replacing again locally free sheaves by Gln-torsors, given Gln-torsors
P,Q over SpecB, we have to show that an equivariant isomorphism P×(B/IB) →
Q× (B/IB) locally extends to an equivariant isomorphism P → Q. In particular,
we can assume that P and Q are both trivial and in this case the above property
follows because Gln(B) → Gln(B/IB) is surjective, since Gln is smooth.

The previous two claims show that Y → Xfppf is a gerbe. We have now to
check the banding and therefore to compute the automorphism group of an object

(N,ϕ) ∈ Y over a ring B. The group Aut(χ) consists of the automorphism N
λ−→ N

inducing the identity on N/IN . It is easy to check that the map

HomB(N, IN) → Autχ, δ 7→ idN + δ

is an isomorphism of groups. Since IN = I ⊗R N and N ⊗ (B/mRB) ≃ V0 ⊗
(B/mRB) we have

HomB(N, IN) = I ⊗ EndB(N) ≃ I/I2 ⊗ EndB(N)

≃ EndB/mRB(V0 ⊗ (B/mRB)). �

Lemma 1.14. Assume that R is a Henselian ring with residue field k. Then any
finite-ndimensional representation of G over k lifts to R.

Proof. Since G is finitely presented, we can assume that R is the Henselization
of a scheme of finite type over Z. Since G is linearly reductive, we have that
H2(B(G × k),−) = 0 and, viewing G-representations as sheaves over BG and

using 1.13, we obtain a lifting of V to a representation over the completion R̂. We
can then conclude using Artin’s approximation theorem over R. �
Proposition 1.15. There exists an fppf covering U = {Ui → SpecR}i∈I such
that G×S Ui has a good representation theory over Ui for all i. If G is étale over
R there exists an étale covering with the same property.

Proof. We start with the case when R = k is a field. The group G is good after a
finite extension of k because an irreducible representation of G over the algebraic
closure of k is always defined over a finite extension of k. Now assume that G is
étale. If k is perfect there is nothing to prove. So assume char k = p > 0. After
passing to a separable extension of k we can assume that G is constant of order
prime to p. So G is defined over Fp, which is perfect and again we have our claim.

Now return to the general case. Since G is finitely presented, we can assume
that R is of finite type over Z. Let p ∈ SpecR and L/k(p) an extension such
that GL = G× L is good, with L/k(p) separable if G is étale. There exists a flat
finitely presented map h : SpecR′ → SpecR such that h−1(p) ≃ SpecL. If L/k
is separable we can even assume that h is étale. This shows that we can assume
that Gk(p) = G× k(p) is good. From 1.14 any Gk(p) representation lifts to Rhp , the
Henselization of Rp, and, since this ring is a direct limit of algebras étale over R,
we get the required result. �

Putting together 1.14 and 1.15 we get:
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Theorem 1.16. A constant linearly reductive group over a strictly Henselian ring
has a good representation theory.

Remark 1.17. If (G, IG) is a good linearly reductive group there is an explicit way
to map linear functors to sheaves, which may be useful in concrete examples. Let T
be an R-scheme, set LGR(T ) for the category of R-linear functors LocGR→ QCohT
and define

F∗ : L
G
R(T ) → QCohG T, FΓ =

⊕
V ∈IG

V ∨ ⊗ ΓV

where the action of G on the ΓV is trivial. Using 1.9 it is easy to see that F∗ is
a quasi-inverse of Ω∗ : QCohG T → LGR(T ), Ω

G = (G ⊗ −)G, the other natural
isomorphism being

βU : ΩFΓ

U ≃(U ⊗FΓ)
G≃

⊕
V ∈IG

HomG(V,U)⊗ ΓV →ΓU for Γ∈LGR(T ), U ∈LocGR.

The map β−1
U : ΓU → (U⊗FΓ)

G is uniquely determined by a map αU : U∨⊗ΓU →
FΓ. It is easy to see that:

1) if U ∈ IG then αU is the inclusion;
2) if U = U1 ⊕U2 then αU is zero on Ui

∨ ⊗ ΓUj for i ̸= j ∈ {1, 2} and coincides
with αUi on Ui

∨ ⊗ ΓUi for all i = 1, 2;
3) if U = H⊗ U ′ for H ∈ LocR and U ′ ∈ LocGR then αU is

U∨ ⊗ ΓU ≃ H∨ ⊗H⊗ U ′ ⊗ ΓU ′
evH⊗αU′−−−−−−→ FΓ

where evH : H∨ ⊗H → R is the evaluation;
4) if γ : V → U is a G-equivariant isomorphism then αV = αU ◦ [(γ∨)−1 ⊗ Γγ ].

Using the maps α∗ (and by going through the definitions) if Γ is a monoidal
functor the associated ring structure on FΓ is given by

V ∨ ⊗ ΓV ⊗W∨ ⊗ ΓW → (V ⊗W )
∨ ⊗ ΓV⊗W

αV ⊗W−−−−→ FΓ for V,W ∈ IG.

Proof of Theorem A, last sentence. The functor ∆̃ : LAlgGR → MonGR is well de-
fined thanks to 1.7. It is an equivalence thanks to 1.1 and the fact that if A ∈
QAlgG T and ΩA ∈ MonGR(T ) then, using 1.3, A ≃ (A ⊗ R[G])G = ΩA

R[G] is
locally free of finite rank.

We now show the last equality in the statement. Using notation from 1.17, if
Γ ∈ MonGR,reg(T ) then A = FΓ ∈ QAlgG T is such that Γ ≃ ΩA . We can assume
that ΓV is free of rank rkV for all V ∈ IG. In this case R[G] ⊗ OT and A have
the same decomposition in terms of the representations in IG and thus they are
isomorphic.

We finally show that G-Cov is open and closed in LAlgGR. This problem is
fppf local in the base, thus we can assume that G is a good linearly reductive
group thanks to 1.15. In this case G-Cov (resp. LAlgGR) corresponds to MonGR,reg
(resp. MonGR) via ∆̃ and MonGR,reg is the locus in MonGR of functors Γ such that
rk ΓV = rkV for all V ∈ IG. Since IG is finite, this is an open and closed condition,
as required. �
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2. Induction from a subgroup for equivariant algebras

As in the previous section we fix a base ring R and a flat, finite and finitely
presented group scheme G over R.

Let H be an open and closed subgroup scheme of G. If F ∈ QCohH T we define
the induction from H to G of F , denoted by indGH F , as (F ⊗R[G])H ∈ QCohG T .
For details and properties we refer to [Jan87, Part I, Sect. 3]. If F is also a quasi-
coherent sheaf of algebras, that is F ∈ QAlgH T , then indGH F ∈ QAlgG T , that is
it inherits a natural structure of sheaf of algebras with an action of G. The aim
of this section is to prove the following.

Theorem 2.1. If H is an open and closed subgroup scheme of G the functor

indGH : LAlgHR → LAlgGR, A 7→ (A ⊗R[G])H

is well defined, quasi-affine and étale. The (open) image consists of those A ∈
LAlgGR T such that, for all geometric points Spec k → T , there exists a subset of
points of Spec(A ⊗ k) whose geometric stabilizers are contained in H × k and
whose G(k)-orbits cover the whole Spec(A ⊗ k).

Lemma 2.2. Assume that R is a strictly Henselian ring. If A,B are local R-
algebras such that A is finite over R and the maximal ideal of B lies over the
maximal ideal of R, then A⊗R B is local.

Proof. Set kA, kB for their residue fields. Since A⊗RB is finite over B it is enough
to note that kA ⊗kR kB is local since kA/kR is purely inseparable. �
Lemma 2.3. Assume that R is a strictly Henselian ring and let X → SpecR be a
cover with an action of G. Consider the decomposition into connected components

G =
⊔
i∈G

Gi and X =
⊔
j∈X

Xj .

Given i ∈ G and j ∈ X, the restriction of the action Xj ×Gi → X factors through
a unique component Xj⋆i with j ⋆i ∈ X. The operation −⋆− : G×G→ G obtained
when X = G with the right action of G by multiplication makes G into a group,
whose unity 1 ∈ G is the connected component containing the identity. In general
the association X×G→ X defines a right action of G on the set X. Moreover, G1

is a subgroup scheme of G and the map Gi ×G1 → Gi makes Gi into a G1-torsor
for all i ∈ G.

Proof. Finite algebras over Henselian rings are products of their localizations. In
particular the Gi and Xj are the spectrum of the localizations of H0(OG) and
H0(OX), respectively. All the conclusions follow easily from 2.2. �
Lemma 2.4. Let H be an open and closed subgroup scheme of G and let B be

a local ring with residue field k, A ∈ LAlgGB, Z = Spec Ã ⊆ SpecA be an

H-equivariant open and closed subscheme. Then the map A → indGH Ã induced

by the projection A → Ã is an isomorphism if and only if

(Z × k)g ∩ Z × k ̸= ∅ ⇒ g ∈ H(k) ∀g ∈ G(k)
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and the G(k)-orbits of Z × k cover the whole Spec(A ⊗ k). In this case Ã ∈
LAlgH B and the geometric stabilizers of Z for the action of H or G coincide. If
in addition G is étale over B, then we can replace k with the separable closure of
k in the formula above.

Proof. It is easy to see that there exists a (étale if G/R is étale) cover SpecR′ →
SpecR such that G × R′ splits as a disjoint union of copies of H × R′, that is,
the right cosets of H × R′. Localizing in a maximal ideal of R′ we see that we
can assume this decomposition holds also for R and that R = B. In particular,
R[G] ≃ R[H]R, where R ⊆ G(R) is a set of representatives of the right cosets of
H, and therefore, using 1.3, we have

indGH Ã = (Ã ⊗R[G])H ≃ (Ã ⊗R[H]R)H ≃ ((Ã ⊗R[H])H)R ≃ Ã R.

In particular, indGH Ã is flat over B and, if A ≃ indGH Ã , then Ã is locally free

and therefore Ã ∈ LAlgH B. Since the map A → indGH Ã is an isomorphism
if and only if it is so after tensoring with k or the separable closure ks, we can
assume that R = B = L is ks if G/B is étale or k otherwise. The action of G on

indGH Ã ≃ Ã R is induced by the right action of G(L) on R and the the action of

H on Ã . Thus the map

Spec(indGH Ã ) =
⊔
g∈R

Z → SpecA

is the disjoint union of the g|Z : Z → SpecA where g|Z is the restriction of the
action of g ∈ G(L). Taking into account 2.3, the above map is an isomorphism if
and only if SpecA is the disjoint union of the Zg for g ∈ R, which is equivalent
to the two conditions given in the statement. �
Definition 2.5. If R is a strictly Henselian ring, X → SpecR a cover with an
action of G and Xi a connected component of X we call the stabilizer of Xi the
open and closed subgroup H of G which is the disjoint union of the components
Gj of G such that XiGj ⊆ Xi.

Lemma 2.6. Assume that R is a strictly Henselian ring with residue field k and
let A ∈ LAlgGR, p ∈ SpecA be a maximal ideal and denote by Hp the geometric
stabilizer of p and by Up the stabilizer of the connected component SpecAp. Then
Hp is a closed subgroup scheme of Up× k, they are topologically equal and, if G(k)
acts transitively on Spec(A ⊗ k), there exists an isomorphism

indGUp
Ap ≃ A .

Proof. We are going to use 2.2 several times. Set X = SpecA and Xp = SpecAp.
Notice that the closed points of SpecA correspond to Spec(A ⊗k) or Spec(A ⊗k),
so that we can also think p ∈ Spec(A ⊗k). Moreover, Up×k is the stabilizer of the
connected component SpecAp⊗ k of SpecA ⊗ k. In particular, Hp(k) = Up(k) so
that Hp is a closed subgroup scheme of G× k contained in Up × k. Moreover, we
can apply 2.4 with Z = SpecAp and H = Up obtaining the desired isomorphism.
�
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Proof of Theorem 2.1. Arguing as in the proof of 2.4, we can assume that G is a
disjoint union of copies of H, namely, its right cosets, obtaining an isomorphism

indGH B = (B ⊗R[G])H ≃ ((B ⊗R[H])H)R ≃ BR for B ∈ LAlgHR

whereR ⊆ G(R) is a set of representatives of the right cosets of H inG. This shows
that indGH is well defined. Moreover, since it is faithful, it is also representable by
algebraic spaces. We are going to prove that it is étale and separated. By [MBL99,
App. A, Thm. A.2] it will follow that it is quasi-affine.

Let A be an R-algebra and ξ : SpecA → LAlgGR be a map given by A ∈
LAlgGA. The fiber product X : (Sch/A)op → (Sets) of ξ and indGH is given by

X(T ) = {(B, ψ) | B ∈ LAlgH T and ψ : A ⊗OT ≃ indGH B}.
Notice that the datum ψ can also be given as an H-equivariant map A ⊗OT → B
which induces an isomorphism A ⊗OT → indGH B via adjunction. In particular, we
obtain a map X → HilbSpecA /A which is a monomorphism because if (B, ψ) ∈ X
then the action of H on B is completely determined by the action of H on A and
by ψ. Since HilbSpecA /R and monomorphisms are separated, it follows that X is
separated too.

Since LAlgHR and LAlgGR are locally of finite presentation by 1.5 so is X →
SpecA. Thus in order to show that X is étale over A we can assume that A is an
Artinian local ring and prove that, if J is a square zero ideal of A, then an object
(B′, ψ′) ∈ X(A/J) extends uniquely to X(A). The map SpecB′ → SpecA /JA
induced by ψ′ is an H-invariant open and closed subscheme of SpecA /JA . This
gives an open and closed subscheme SpecB ⊆ SpecA . This is also H-invariant:
if γ : SpecB × H → SpecA is the restriction of the action, then γ−1(SpecA −
SpecB) = ∅ because it is empty after tensoring by A/J . Thus we have extended
the H-equivariant map

A ⊗A/J
ψ−→ indGH B′ → B′

to an H-equivariant map A → B and it is also clear that this extension is unique
up to a unique isomorphism. Finally, the map A → indGH B is an isomorphism
because it is so after tensoring by A/J .

It remains to characterize the image of indGH . Let k be an algebraically closed
field and A ∈ LAlgG k. Given p ∈ SpecA we denote by Hp its geometric stabilizer
and by Up the stabilizer of SpecAp.

Assume that A is in the image, that is A ≃ indGH B. The conclusion follows,

applying 2.4 with Ã = B. Conversely, assume there is a set of points Z ⊆ SpecA
as in the statement. Set X = SpecA and Xp = SpecAp for p ∈ SpecA . We can
assume that the points of Z are all in different orbits, that is

X =
⊔
p∈Z

XpG(k).

By 2.4 we have Up(k) = Hp(k) and therefore Up ⊆ H. Moroever we also have

A ≃
∏
p∈Z

indGUp
Ap ≃

∏
p∈Z

indGH(indHUp
Ap) ≃ indGH

( ∏
p∈Z

indHUp
Ap

)
as required. �

We conclude with the following results that will be used in the next sections.
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Corollary 2.7. Assume that G is a constant group and let A ∈ LAlgGB, where
B is an R-algebra, such that A G = B. If H is the geometric stabilizer of a prime
ideal p of A lying over q ∈ SpecB then there exists a an étale morphism B → B′,

q′ ∈ SpecB′ over q, Ã ∈ LAlgH B′ such that Ã H = B′and a G-equivariant
isomorphism

A ⊗B B′ ≃ indGH Ã

Moreover, we can also assume that Ã ⊗ k(q′) is local, its maximal ideal lies over
p ∈ SpecA and has geometric stabilizer equal to H .

Proof. We are going to prove that G(k(q)) acts transitively on Spec(A ⊗ k(q)).
Using 2.2, we can find a separable finite extension L/k such that Spec(A ⊗k(q)) →
Spec(A ⊗L) is bijective. Moreover, there exists a flat and local B-algebra B′ with
residue field L. Since (A ⊗ B′)G = B′, by standard arguments it follows that
G (as constant group) acts transitively on the set of maximal ideals of A ⊗ B′

and thus on Spec(A ⊗ L) as required. Now let p ∈ Spec(A ⊗ k(q)) lying over
p ∈ SpecA . Since G is constant, the geometric stabilizer H of p (that is of p)
coincides with the stabilizer of the connected component Spec((A ⊗ k(q))p) and,

if we set B = (A ⊗ k(q))p, by 2.6 we get an isomorphism

A ⊗ k(q) ≃ indGH B.

Since indGH : LAlgHR → LAlgGR is étale, there exists an étale morphism SpecB′ →
SpecB, q′ ∈ SpecB′ over q, B ∈ LAlgH B′ such that A ⊗ B′ ≃ indGH B and
B ⊗ k(q′) ≃ B. Moreover we have isomorphisms

B′ ≃ (A ⊗B′)G ≃ (indGH B)G ≃ BH .

Thus Ã = B satisfies the desired conditions. �
Lemma 2.8. Let H be an open and closed subgroup of G, T an R-scheme and
F ∈ QAlgH T . Then

ΩindG
H F ≃ ΩF ◦ RH : LocGR→ QCohT

where RH : LocGR→ LocH R is the restriction.

Proof. Given V ∈ LocGR we have

Ω
indG

H F
V = HomG(V ∨, indGH F) ≃ HomH(RH(V )∨,F) = ΩF

RH(V ). �

3. Reducibility of G-Cov for nonabelian linearly reductive groups

The aim of this section is to prove the reducibility of G-Cov when G is a non-
abelian linearly reductive group, that is Theorem B. We fix a base ring R and a
finite, flat, finitely presented and linearly reductive group scheme G over R.

Definition 3.1. Let S be a scheme and X be an algebraic stack over S. The stack
X is called universally reducible over S if, for all base changes S′ → S, the stack
X ×S S′ is reducible.
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Remark 3.2. It is easy to check that X is universally reducible over S if and only
if for all fields k and maps Spec k → S the fiber is reducible.

We start by stating the generalization of Theorem B we are going to prove at
the end of this section.

Theorem 3.3. If G is a finite, flat and finitely presented nonabelian and linearly
reductive group scheme over R then G-Cov is reducible. If, moreover, G is defined
over a connected scheme, then G-Cov is also universally reducible.

Note that, if we do not assume that the base SpecR is connected, we cannot
conclude that G-Cov is universally reducible, since one can always take G as a
disjoint union of µ2 and S3 over SpecQ⊔SpecQ. On the other hand, what happens
when the base is not connected is clear from the following Proposition.

Proposition 3.4. The locus of SpecR where G is abelian is open and closed in
SpecR.

Proof. Denote by Z this locus and set S = SpecR. Topologically, |Z| is closed
in S, because it is the locus where the maps G × G → G given by (g, h) 7→ gh
and (g, h) 7→ hg coincide and G is flat and proper. We have to prove that, given

an algebraically closed field k and a map Spec k
p−→ S such that Gk = G × k is

abelian, there exists an fppf neighborhood of S around p where G is abelian. By
[AOV08, Thm. 2.19], we can assume that G = ∆ nH, where ∆ is diagonalizable
and H is constant. If Gk is abelian, then H is abelian, the map H → Aut∆ ≃
Aut(Hom(∆,Gm))op is trivial and therefore G ≃ ∆×H is abelian. �

Definition 3.5. We say that an open substack U of an algebraic stack X is
schematically dense if X is the only closed substack of X containing U . If U
is a quasi-compact open substack of X its schematic closure is the minimum of the
closed substacks of X containing U or, alternatively, the (unique) closed substack
Z of X such that U ⊆ Z and U is schematically dense in Z.

We denote by ZG the schematic closure of BG inside G-Cov and we call it the
main irreducible component of G-Cov.

The existence of the schematic closure as stated above and the fact that it is
stable by flat base changes follows from [Gro66, Thm. 11.10.5]. Although we have
called ZG the main irreducible component of G-Cov, the stack ZG is irreducible
if and only if SpecR is irreducible, because this is the only case in which BG is
irreducible.

Lemma 3.6. Let H be an open and closed subgroup scheme of G and B ∈ LAlgHR .
Then

indGH B ∈ BG ⇐⇒ B ∈ BH, indGH B ∈ ZG ⇐⇒ B ∈ ZH .

Proof. The fact that B ∈ BH⇒indGH B ∈ BG is well known. For the converse
set P = SpecB and consider it as a sheaf of sets over Sch/T with a right action
of H, where T is the R-scheme over which B is defined. Then Q = Spec(indGH B)
is by definition (P × G)/H, where the H action on P × G is given by (p, g)h =
(ph, h−1g) and the G-action is on the right. It is easy to check that the natural
map P → Q, p 7→ (p, 1) is an H-equivariant monomorphism. Assume that Q is
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a G-torsor. It follows that H acts freely on P , so that sheaf quotient P/H and
stack quotient [P/H ] coincide. Moreover, P/H → Q/G is an isomorphism, so that
P/H ≃ Q/G ≃ T because Q is a G-torsor. In conclusion, P → [P/H] ≃ T is an
H-torsor.

Since H-Cov (resp. G-Cov) is closed in LAlgHR (resp. LAlgGR) by Theorem A,
it follows that ZH (resp. ZG) is the schematic closure of BH (resp. BG) inside
LAlgHR (resp. LAlgGR). The second equivalence therefore follows because flat maps
preserve schematic closures and indGH : LAlgHR → LAlgGR is étale by 2.1. �
Definition 3.7. Assume thatG is a good linearly reductive group and that SpecR
is connected. Given a scheme T , we will say that a functor Ω: LocGR→ LocT (a
sheaf of algebras A ∈ LAlgG T ) has equivariant constant rank (or is of equivariant
constant rank) if for all V ∈ LocGR the locally free sheaf ΩV (ΩA

V = (V ⊗A )G) has

constant rank. In this case we define the rank function rkΩ: IG→N (rkA : IG→N)
as

rkΩV = rkΩV (rkA
V = rkΩ

A

V = rk(V ⊗ A )G).

Given f : IG → N we will still call f the extension f : LocGR→ N given by

fU =
∑
V ∈IG

rk(HomG(V,U))fV

so that if Ω: LocGR → LocT is an R-linear functor then rkΩV = rkΩV for all
V ∈ LocGR.

Lemma 3.8 ([MM03]). A constant group whose proper subgroups are abelian is
solvable.

We are ready for the proof of Theorem 3.3.

Proof of Theorem 3.3. If the base scheme is not connected, then clearly G-Cov is
reducible. By 3.2 and 3.4, we can assume that S = Spec k, where k is a field.
Notice that G-Cov is reducible if and only if ZG(k) ( G-Cov(k), where k is the
algebraic closure of k. Moreover, ZG×k ≃ ZG × k. Thus, taking into account 3.4,
we can assume that k is algebraically closed, so that G is a good linearly reductive
nonabelian group scheme.

Let H be an open and closed subgroup of G. We claim that if one of the
following statements holds then G-Cov is reducible:

1) H-Cov is reducible.
2) There exists f : IH → N whose extension f : LocH k → N is such that

fRH V = rkV for any V ∈ IG and there exists ∆ ∈ IH such that f∆ ̸= rk∆.

Assume that H-Cov is reducible and, by contradiction, that G-Cov is irreducible.
If B ∈ H-Cov(k) then indGH B ∈ G-Cov(k) = ZG(k) and so B ∈ ZH(k) by 3.6.
Therefore H-Cov is irreducible.

Now let f : IH → N as in 2) and define

F =
⊕

R ̸=∆∈IH

∆∨ ⊗ kf∆ , B = k ⊕ F
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so that f = rkB (note that by hypothesis we have fR = 1). Setting F 2 = 0
we obtain a structure of algebra on B such that B ∈ LAlgH k. We claim that
A = indGH B ∈ (G-Cov(k)−ZG(k)). Indeed we have ΩA = ΩB ◦RH by 2.8, so that

rkΩAV = rkΩBRH V = fRH V = rkV for all V ∈ RepGR.

Thus ΩA ∈ MonGR,reg and, since G is good, by Theorem A we can conclude that A ∈
G-Cov. If by contradiction A ∈ ZG(k), by 3.6 we have B ∈ ZH(k) ⊆ H-Cov(k) so
that, by Theorem A, rkΩB∆ = f∆ = rk∆ for all ∆ ∈ IH , which is not the case.

We return now to the original statement. We are going to use notation from 2.3.
By [AOV08, Thm. 2.19] we have G = G1nG with G1 diagonalizable. In particular
G cannot be trivial. If G is not solvable, take a minimal nonabelian subgroup K
of G. All the proper subgroups of K are abelian and therefore K is solvable
thanks to 3.8. If we call ϕ : G → G the natural projection, then G′ = ϕ−1(K) is
a nonabelian open and closed subgroup of G such that G′ ≃ K is solvable. Using
situation 1) above we can replace G by G′, that is, assume that G is solvable. In
particular, there exists a surjective homomorphism α : G → Z/pZ for some prime
p. Set H = Kerα, which is an open and closed subgroup of G. If H is nonabelian,
using again situation 1) we can replace G by H. Proceeding by induction we can
finally assume to have a surjection G → Z/pZ whose kernel H is abelian. Since
H is linearly reductive and k is algebraically closed the group H is diagonalizable.
Set N = Hom(H,Gm). We will construct an f : IH → N as in situation 2) above.
This will conclude the proof.

Since H is commutative, the group G/H ≃ Z/pZ acts on H and on N =
Hom(H,Gm) by conjugation. Given m ∈ N we are going to denote by Vm the
corresponding one-dimensional representation of H. Let R ⊆ N be a set of repre-
sentatives of N/(Z/pZ). Note that, since p is prime, an element n ∈ N is fixed or
its orbit o(n) has order p. We claim that if V ∈ IG there exists a unique m ∈ R
such that

RH V = V rkV
m with |o(m)| = 1 or V = indGH Vm with |o(m)| = p.

Indeed there exists m ∈ N such that V ⊆ indGH Vm. Given n, n′ ∈ N we have

RH indGH Vn =
⊕

g∈Z/pZ

Vg(n) and ( indGH Vn ≃ indGH Vn′ ⇐⇒ n′ ∈ o(n)).

So we can assume m ∈ R. Moreover, such an m is unique since if V ⊆ indGH Vm′ ,
RH V contains some Vn where n ∈ N is in the orbit of both m and m′. In
particular, if |o(m)| = 1, then indGH Vm = V pm and therefore RH V = V rkV

m . So
assume |o(m)| = p. Given W ∈ LocG k (LocH k) and g ∈ G(k) call Wg the
representation of G (H) that has W as the underlying vector space, while the
action of G (H) is given by t⋆x = (g−1tg)x. Note that by definition (Vn)g = Vg(n).
In particular, the multiplication by g−1 on V yields a G-equivariant isomorphism
V ≃ Vg and therefore Vn ⊆ RH V implies that Vg(n) ⊆ RH V . Since |o(m)| = p we

can conclude that V = indGH Vm. Define

fVn =

{
|o(n)| if n ∈ R,
0 otherwise.
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We claim that f satisfies the property 2). Indeed, if V ∈ IG and there exists
m ∈ R such that V = V rkV

m with |o(m)| = 1, then fRH V = rkV fVm = rkV .
Otherwise there exists m ∈ R with |o(m)| = p such that

V = indGH Vm ⇒ fRH V =
∑

g∈Z/pZ

fVg(m)
= p = rkV.

Finally note that if n ∈ R is such that |o(n)| = p then fVn = p ̸= 1 = rkVn. So
we have to show that such an n exists. If by contradiction this is false, then the
actions of Z/pZ on N and H, as well as the action of G on H by conjugation are
trivial. So H commutes with all the elements of G. Let g ∈ G(k) ≃ G not in H,
so that it lies over a generator of G/H ≃ Z/pZ. If T is a k-scheme, any element
of G(T ) can be written as hgi with h ∈ H(T ) and 0 ≤ i < p. It is straightforward
to check that two such elements commute and that therefore G is abelian, which
is not the case. �

4. Regularity in codimension 1

The aim of this section is to prove Theorem C. In this section we fix a finite and
étale group scheme G over R. We require the étaleness condition on G because we
want G-torsors to be regular over a regular base.

We start with some definitions and remarks. In what follows T will be an
arbitrary R-scheme if not specified otherwise.

Remark 4.1. If f : X → T is a cover with an action of G then f is a G-torsor if
and only if f is étale, X/G = T and rk f∗OX = rkG. The implication⇒is easy.
For the converse, since the locus where f is a G-torsor is open in T and taking
invariants commutes with flat base changes of T , we can assume that T = SpecB,
where B is a local ring, that G is constant and that X is a disjoint union of rkG
copies of T . Since G acts transitively on the closed points of X because X/G = T ,
the orbit map G× T → X is an étale surjective cover. The rank condition implies
that this is an isomorphism.

Remark 4.2. If G is a good linearly reductive group and V ∈ IG then rkV ∈ R∗

and the evaluation map eV : V ⊗V ∨ → R induces an isomorphism (V ⊗V ∨)G → R.
By a local check we see that eV is surjective and, since G is linearly reductive,
we can conclude that (V ⊗ V ∨)G → R is surjective too. Moreover, we have a G-
equivariant isomorphism HomR(V, V ) ≃ V⊗V ∨ and the map eV corresponds to the
trace map trV : HomR(V, V ) → R under this isomorphism. Since HomG

R(V, V ) =
RidV by 1.9 we can conclude that (V ⊗ V ∨)G → R is an isomorphism and, since
trV (idV ) = rkV , that rkV ∈ R∗.

Definition 4.3. Let f : X → T be a cover. The trace map of f will be denoted by

trf : f∗OX → OT .

We also set

t̃rf : f∗OX → (f∗OX)
∨
, x 7→ trf (x · −) and Qf = Coker(t̃rf ) ∈ QCoh(T ).
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The discriminant section sf ∈ (det f∗OX)−2 is the section induced by the deter-
minant of the map t̃rf .

Assume now that G acts on X over T and that X/G = T and consider V ∈
LocGR. If f is a G-cover or G is linearly reductive we denote by

Ωf : LocGR→ LocT, Ωf = (f∗OX ⊗−)G

the associated monoidal functor (see Theorem A), by

ωf,V : ΩfV ⊗ ΩfV ∨ → ΩfV⊗V ∨ → ΩfR ≃ OT

where the first map is given by the monoidality, while the second is induced by
the evaluation eV : V ⊗ V ∨ → R, by

ξf,V : ΩfV ∨ → (ΩfV )
∨

the induced map, and set Qf,V = Coker(ξf,V ). If f is a G-cover, then the source
and target of the map ξf,V are locally free sheaves of the same rank rk V by
Theorem A, and we denote by

sf,V ∈ (detΩfV ⊗ detΩfV ∨)
−1

the section induced by det ξf,V .

When A ∈ LAlgG T and f : SpecA → T we will use the subscript −A instead
of −f .

Remark 4.4. If A ∈ LAlgG T then trA : A → OT is G-equivariant. Indeed, one
can assume T is affine, G is constant and A is free, and use the invariancy of the
trace map under conjugation.

Lemma 4.5. Assume that R is a local ring, that G is a good linearly reductive
group and let A ∈ LAlgG T be such that A G = OT and rkA = rkG. Then

Ker trA ≃
⊕

R ̸=V ∈IG

V ∨ ⊗ ΩA
V and QA ≃

⊕
V ∈IG

V ∨ ⊗QA ,V .

Moreover, if A ∈ G-Cov then there exists an isomorphism

(det f∗OX)−2 ≃
⊗
V ∈IG

(det(ΩfV )
−1 ⊗ det(ΩfV ∨)

−1)rkV such that sf 7→
⊗
V ∈IG

s⊗ rkV
f,V .

Proof. Notice that, since R is local, then if V ∈ IG there exists a unique V̂ ∈ IG
such that V̂ ≃ V ∨. For all V ∈ IG let us fix an equivariant isomorphism ζV : V ∨ →
V̂ . For simplicity set also Ω = ΩA : LocGR→ LocT .

Since trA : A → OT is G-invariant, we have that Ker trA is G-invariant too.
By 1.17 we have

Ker trA =
⊕
V ∈IG

V ∨ ⊗ ΓV with ΓV ⊆ ΩV .
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Since G is linearly reductive and rkA = rkG, we have trA (1) ∈ O∗
T and, in

particular, that trA : A → OT is surjective. So

OT =
⊕
V ∈IG

V ∨ ⊗ (ΩV /ΓV )

is a G-equivariant decomposition and therefore ΓV = ΩV for R ̸= V ∈ IG and
ΓR = 0. In other words trA = (rkG)π, where π : A → OT is the projection
according to the G-equivariant decomposition of A . We are going to use the
description given in 1.17 of the product of

A =
⊕
V ∈IG

V ∨ ⊗ ΩV

using the maps αU : U∨⊗ΩU → A for U ∈ LocGR. Notice that, given V,W ∈ IG,
the product of elements of V ∨ ⊗ ΩV and W∨ ⊗ ΩW lies in Ker trA = kerπ, i.e.,
has no component in A G ≃ R∨ ⊗ ΩR, except for the case (V ⊗W )G ̸= 0. Since

(V ⊗W )G = HomG(V,W∨)

this is the case only when W = V̂ . So the trace map t̃rA : A → A ∨ is the direct
sum of the maps

ξV : V ∨ ⊗ ΩV → ((V̂ )
∨
⊗ ΩV̂ )

∨

induced by δV : V ∨ ⊗ΩV ⊗ (V̂ )
∨
⊗ΩV̂ → A ⊗A → A

trA−−→ OT , which is also the
composition

V ∨⊗ΩV ⊗(V̂ )
∨
⊗ΩV̂ ≃(V ⊗ V̂ )

∨
⊗ΩV ⊗ΩV̂ →(V ⊗V̂ )

∨
⊗ΩV⊗V̂

αV ⊗V̂−−−−→A
rkGπ−−−→OT .

Denote by eV : V ⊗ V ∨ → R the evaluation map. By replacing V̂ by V ∨ using
the given isomorphism, we are going to check that the composition of the last two
maps above is the evaluation (V ⊗ V ∨)∨ ≃ V ∨ ⊗ V

eV−−→ R tensor ΩeV , up to an
invertible element. This will imply that ξV is isomorphic to the map

idV ∨ ⊗ ξA ,V ∨ : V ∨ ⊗ ΩV → V ∨ ⊗ (ΩV ∨)
∨

and, from this, the claimed result easily follows.
By 4.2 the map eV : V ⊗V ∨ → R is surjective and it extends to a G-equivariant

isomorphism γ : V ⊗ V ∨ → R ⊕ Z where Z ∈ LocGR is such that ZG = 0. By
1.17 we have that αV⊗V ∨ = αR⊕Z ◦ ((γ∨)−1 ⊗ Ωγ) and, since ZG = 0, that
π ◦ αR⊕Z : (R ⊕ Z)∨ ⊗ ΩR⊕Z → OT ≃ R∨ ⊗ ΩR is the tensor product of the two

natural projections. Since V ⊗ V ∨ γ−→ R ⊕ Z → R is eV , we can conclude that

π ◦ αV⊗V ∨ is the tensor product of ΩeV : V ⊗ V ∨ → R and (V ⊗ V ∨)∨
(γ∨)−1

−−−−→
(R⊕Z)∨ → R∨. This last map is surjective, G-equivariant and therefore it is, up

to an invertible element of R, the map (V ⊗ V ∨)∨ ≃ V ∨ ⊗ V
eV−−→ R by 4.2. �
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Proof of Theorem C. Recall that the loci in Y where f : X → Y is a G-torsor or
a G-cover are open thanks to 1.5 and that, when G is constant, it acts transitively
on the set of points of X over a given point of Y because X/G = Y . In particular,
the geometric stabilizers of two points of X over a given point of Y are conjugates
in G and therefore isomorphic. We start by proving how to deduce the two claims
after 3). For the first claim, by 3) we have rk f = rkG/rkT , so that f is generically
a G-torsor (that is T = 0) if and only if rk f = rkG. Moreover, when T = 0 the
description of the geometric stabilizers of the codimension 1 points of X over q is
contained in 3). For the second claim it is enough to note that the generic fiber of X
is SpecL, where L/k(R) is a finite field extension with LG = k(R) and the action
of G on L is faithful because AutY X → Autk(R) L is injective: it follows that
L/k(R) is a Galois extension with group G and therefore rk f = dimk(R) L = rkG.

We start by showing the equivalence between 1), 2), 3) and the following con-
dition:

2′) the module Qf ⊗OY,q is defined over k(q) and the integer rkH/ rkT , where
H and T are the geometric stabilizers of a point of X over q, and a generic
point of X respectively, is coprime with char k(q).

We will show that the quotient rkH/ rkT is an integer. We are going to use some
results and definitions from [Ton15]. In particular, all points of X over q are tame
with separable residue fields if and only if the common rank (over k(q)) of a
connected component of X×Y k(q) is coprime with char k(q) (see [Ton15, Lem. 1.6,
Cor. 1.7]). In particular, 3)⇒1): this common rank is rkB = rkH/ rkT applying
2.7 to B ⊗ k(q)/k(q). Moreover, we can replace Y by any étale neighborhood
around q and, in particular, assume G constant and Y = SpecR.

Write X = SpecA with A ∈ LAlgGR and let H be the geometric stabilizer of

a point of SpecA over q. By 2.7 we can assume A ≃ indGH Ã with Ã ∈ LAlgH R

such that Ã ⊗R k(q) is local, Ã H = R and H is the geometric stabilizer of

the maximal ideal of Ã ⊗R Rq. As rings we have A ≃ Ã (rkG/ rkH), so that

QA ≃ Q(rkG/ rkH)

Ã
, sA ≃ s

(rkG/ rkH)

Ã
and A is regular in the points over q if

and only if the local ring Ã ⊗R Rq is regular. The above discussion shows that

we can assume that A ⊗R k(q) is local and that G is its geometric stabilizer.
Let G be the image of the map G→ AutA and note that all the maps AutA →
Aut(A ⊗Rq) → Aut(A ⊗k(R)) are injective because A is a locally free R-module.
The equivalence between 1), 2) and 2′) can be checked directly on Rq. Since being
a G-cover is an open condition, also 1)⇒3) can be checked on Rq. Thus we can
assume that R is a DVR (discrete valuation ring), so that A is also a local ring.

Notice that 2), 3) and 2′) imply that A /R is generically étale. This also fol-
lows from 1): if A is a domain then A ⊗ k(R) is a field extension of k(R) with
(A ⊗ k(R))G = k(R) and therefore separable. Thus we can assume that A /R is
generically étale so that, by [Ton15, Cor. 1.7], it follows that A /R is tame with
separable residue fields if and only if rkA and char k(q) are coprime. Since G acts
transitively on Z = Spec(A ⊗k(R)), it follows that Z ≃ G/T as G-space, where T
is the geometric stabilizer of a generic point of A . In particular, rkA = rkG/ rkT ,
which is an integer. Thus [Ton15, Main Thm.] exactly implies the equivalence be-
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tween the conditions 1), 2) and 2′).
It remains to show 1)⇒3). Since A is a domain, A ⊗ k(R) is a field. Moreover,

G acts faithfully on A ⊗ k(R) and (A ⊗ k(R))G = k(R). It follows that A ⊗
k(R)/k(R) is a Galois extension with group G and therefore a G torsor. It follows
that Ker(G → G) = T is the geometric stabilizer of the generic point of A .
In particular, rkG is coprime with char k(q), which implies that the map G →
AutA → Aut(p/p2) ≃ k(p)∗, where p is the maximal ideal of A , is injective
and therefore that G is cyclic. Thus G is linearly reductive over R and, since

G-Cov ⊆ LAlgGR is closed in this case by Theorem A and A /R is generically a
G-torsor, we can conclude that A is a G-cover over R.

We now deal with the last part of the statement. In particular, we assume from
now on that G is linearly reductive and rk f = rkG. Since 1) implies that f is a
G-cover, more precisely f ∈ ZG(Y ), we will assume f ∈ G-Cov(Y ) in what follows.

Denote by Bq the strict Henselization of OY,q, which is an unramified extension
of OY,q and a DVR, and by fq ∈ G-Cov(Bq) the base change of f . By 1.16 the
group Gq = G × Bq has a good representation theory over Bq. Moreover, if

U,W ∈ RepGR, then ξf,U⊕W = ξf,U ⊕ ξf,W , so that Qf,U⊕W ≃ Qf,U ⊕Qf,W and
everything commutes with base change. Using 4.5 we obtain

Qf ⊗Bq ≃
⊕
V ∈IGq

V ∨ ⊗Qfq,V ≃ Qf,R[G] ⊗Bq.

Since for all U ∈ RepGR the representation U ⊗ Bq splits as a direct sum of
representations in IGq we can conclude that 5)⇐⇒2′).

Now notice that, for all U ∈ RepGR, the number vq(sf,U ) coincides with the

length of Qf,U ⊗ Bq over Bq. In particular, for all U ∈ RepGR, if Qf,U ⊗ Bq is

defined over k(q) then vq(sf,U ) ≤ rkq U because Qf,U⊗Bq is a quotient of (ΩfU )
∨⊗

Bq which has rank rkq U . Moreover, ξf,R is by construction an isomorphism so

that, if U ∈ LocGR, we have Qf,U = Qf,U/UG and vq(sf,U ) = vq(sf,U/UG) because

U ≃ UG ⊕ U/UG. Thus 5)⇒4). Since we have

vq(sf,R[G]) = vq(sf ) =
∑

V ∈IGq

rkV · vq(sfq,V ) and vq(sf,R) = 0

we can also conclude that 4)⇒2). �
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